If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-3x-18.2=0
a = 1; b = -3; c = -18.2;
Δ = b2-4ac
Δ = -32-4·1·(-18.2)
Δ = 81.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{81.8}}{2*1}=\frac{3-\sqrt{81.8}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{81.8}}{2*1}=\frac{3+\sqrt{81.8}}{2} $
| 6d−2/11=2d−2/13 | | 42/60=x/100 | | 6d−2/11=2d−213 | | 6^4x=50 | | 4x(6-2)-5=25 | | -3x-45=-7(x+3) | | 43/60=x/100 | | 10a^2+5a-1=0 | | -5t/2=14 | | 2u=64 | | 72/100=x/60 | | 74/100=x/60 | | 4^8x=33 | | 120+6y=180 | | 73/100=x/60 | | 4x*x=10 | | 10s-4=-69 | | 11x-12=13+10,5x | | 3(4-2x)=6 | | 2x=5(2x+3)=-21 | | m=12=24 | | √8x-21=√18-5x | | 7^2x=31 | | 3t+t=-6 | | 3x-8-1=x-4-5+2x | | 3(2x-14)=-3(13+x) | | -1.78=n+5.34 | | 8.35x=4.25x+36.90. | | 6(2x+5)-15=39 | | √(8x-21)=√18-5x | | X+13=2×(x-5) | | 6x=-2x^2+3 |